A Hierarchy of Complete Orthogonal Structures

Charles F. Laywine1, Gary L.Mullen2
1MATHEMATICS DEPARTMENT Brock UNIVERSITY ST. CATHARINES, ONTARIO L2S 3A1 CANADA
2MATHEMATICS DEPARTMENT THE PENNSYLVANIA STATE UNIVERSITY UNIVERSITY PARK, PA 16802 U.S.A.

Abstract

We provide a hierarchy, linearly ordered by inclusion, describing various complete sets of combinatorial objects starting with complete sets of mutually orthogonal Latin squares, generalizing to affine geometries and designs, frequency squares and hypercubes, and ending with \((t, m, s)\)-nets.