Triangle-Free Polyconvex Graphs

Daniel C.Isaksen1, Beth Robinson2
1Department of Mathematics University of Notre Dame Notre Dame, IN 46556
23322 8. Michigan St. South Bend, IN 46614

Abstract

The notion of convexity in graphs is based on the one in topology: a set of vertices \(S\) is convex if an interval is entirely contained in \(S\) when its endpoints belong to \(S\). The order of the largest proper convex subset of a graph \(G\) is called the convexity number of the graph and is denoted \(con(G)\). A graph containing a convex subset of one order need not contain convex subsets of all smaller orders. If \(G\) has convex subsets of order \(m\) for all \(1 \leq m \leq con(G)\), then \(G\) is called polyconvex. In response to a question of Chartrand and Zhang [3], we show that, given any pair of integers \(n\) and \(k\) with \(2 \leq k < n\), there is a connected triangle-free polyconvex graph \(G\) of order \(n\) with convexity number \(k\).