Dudeney’s round table problem was proposed about one hundred years ago. It is already solved when the number of people is even, but it is still unsettled except for only a few cases when the number of people is odd.
In this paper, a solution of Dudeney’s round table problem is given when \(n = p+2\), where \(p\) is an odd prime number such that \(2\) is the square of a primitive root of \(\mathrm{GF}(p)\), \(p \equiv 1 \pmod{4}\), and \(3\) is not a quadratic residue modulo \(p\).
1970-2025 CP (Manitoba, Canada) unless otherwise stated.