On a Problem on Generalised Fibonacci Cubes

Titus Hilberdink1, Carol Whitehead2, Norma Zagaglia Salvi3
1Reading University, Whiteknights, PO Box 217, Reading Berkshire RG6 2AH, U.K.
2Goldsmiths College, London SE14 6NW, U.K.
3Politecnico di Milano, P.za L. da Vinci 32, 20133 Milano, Italy

Abstract

A Fibonacci string of order \(n\) is a binary string of length \(n\) with no two consecutive ones. The Fibonacci cube \(\Gamma_n\) is the subgraph of the hypercube \(Q_n\) induced by the set of Fibonacci strings of order \(n\). For positive integers \(i, n\), with \(n \geq i\), the \(i\)th extended Fibonacci cube is the vertex-induced subgraph of \(Q_n\) for which \(V(\Gamma_{i}^{n}) = V_i\) is defined recursively by

\[V_{n+2}^{i} = 0 V_{n+1}^{i} + 10V_n^{i},\]

with initial conditions \(V_i^i = B_i, V_{i+1}^{i} = B_{i+1}\), where \(B_k\) denotes the set of binary strings of length \(k\). In this study, we answer in the affirmative a conjecture of Wu [10] that the sequences \(\{|V_n^i|\}_{i={1+2}}^\infty\) are pairwise disjoint for all \(i \geq 0\), where \(V_n^0 = V(\Gamma_n)\).