We show that:(a) the special product of two cycles is Hamiltonian decomposable, and (b) if \(G_1\) and \(G_2\) are two Hamiltonian decomposable graphs and at least one of their complements is Hamiltonian decomposable, then the special product of \(G_1\) and \(G_2\) is Hamiltonian decomposable.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.