Circular Chromatic Numbers and Fractional Chromatic Numbers of Distance Graphs with Distance Sets Missing An Interval

Jianzhuan Wu1, Wensong Lin1
1Department of Applied Mathematics, Southeast University, Nanjing 210096, P. R. China

Abstract

Given positive integers \(m, k,\) and \(t\). Let \(D_{m,[k,k+i]} = \{1,2,\ldots,m\} – \{k,k+1,\ldots,k+i\}\). The distance graph \(G(\mathbb{Z}, D_{m,[k,k+i]})\) has vertex set all integers \(\mathbb{Z}\) and edges connecting \(j\) and \(j’\) whenever \(|j-j’| \in D_{m,[k,k+i]}\). The fractional chromatic number, the chromatic number, and the circular chromatic number of \(G(\mathbb{Z}, D_{m,k,i})\) are denoted by \(\chi_f(\mathbb{Z}, D_{m[k,k+i]}), \chi(\mathbb{Z}, D_{m,[k,k+i]}),\) and \(\chi_c(\mathbb{Z}, D_{m,[k,k+i]})\), respectively. For \(i=0\), we simply denote \(D_{m,[k,k+0]}\) by \(D_{m,k}\). \(X(\mathbb{Z}, D_{m,k})\) was studied by Eggleton, Erdős and Skilton [5], Kemnitz and Kolberg [8], and Liu [9], and was completely solved by Chang, Liu and Zhu [1] who also determined \(\chi_c(\mathbb{Z}, D_{m,k})\) for any \(m\) and \(k\). The value of \(\chi_c(\mathbb{Z}, D_{m,k})\) was studied by Chang, Huang and Zhu [2] who finally determined \(\chi_c(\mathbb{Z}, D_{m,k})\) for any \(m\) and \(k\). This paper extends the study of \(G(\mathbb{Z}, D_{m,[k,k+i]})\) to values \(i\) with \(1 \leq i \leq k-1\). We completely determine \(\chi_f(\mathbb{Z}, D_{m,[k,k+i]})\) and \(\chi(\mathbb{Z}, D_{m,k,i})\) for any \(m\) and \(k\) with \(1 \leq i \leq k-1\). However, for \(\chi_c(\mathbb{Z}, D_{m,[k,k+i]})\), only some special cases are determined.