Orthogonal Labeling of Constant Weight Gray Codes by Partitions With Blocks Of Size At Most Two

Inessa Levi1, Steve Seif1
1Department of Mathematics University of Louisville Louisville, KY 40292

Abstract

We extend results concerning orthogonal edge labeling of constant weight Gray codes. For positive integers \(n\) and \(r\) with \(n > r\), let \(G_{n,r}\) be the graph whose vertices are the \(r\)-sets of \(\{1, \ldots, n\}\), with \(r\)-sets adjacent if they intersect in \(r-1\) elements. The graph \(G_{n,r}\) is Hamiltonian; Hamiltonian cycles of \(G_{n,r}\) are early examples of error-correcting codes, where they came to be known as constant weight Gray codes.

An \(r\)-set \(A\) and a partition \(\pi\) of weight \(r\) are said to be orthogonal if every block of \(\pi\) meets \(A\) in exactly one element. Given a class \(P\) of weight \(r\) partitions of \(X_n\), one would like to know if there exists a \(G_{n,r}\) Hamiltonian cycle \(A_1 A_2 \ldots A_{\binom{n}{r}}\) whose edges admit a labeling \(A_1\pi_1 A_2 \ldots A_{\binom{n}{r}}\pi_{\binom{n}{r}}\) by distinct partitions from \(\mathcal{P}\), such that a partition label of an edge is orthogonal to the vertices that comprise the edge. The answer provides non-trivial information about Hamiltonian cycles in \(G_{n,r}\) and has application to questions pertaining to the efficient generation of finite semigroups.

Let \(r\) be a partition of \(m\) as a sum of \(r\) positive integers. We let \(r\) also refer to the set of all partitions of \(X_n\) whose block sizes comprise the partition \(r\). J. Lehel and the first author have conjectured that for \(n \geq 6\) and partition type \(\pi\) of \(\{1, \ldots, n\}\) of weight \(r\) partitions, there exists a \(r\)-labeled Hamiltonian cycle in \(G_{n,r}\).

In the present paper, for \(n = s + r\), we prove that there exist Hamiltonian cycles in \(G_{n,r}\) which admit orthogonal labelings by the partition types which have \(s\) blocks of size two and \(r – s\) blocks of size one, thereby extending a result of J. Lehel and the first author and completing the work on the conjecture for all partition types with blocks of size at most two.