Nested \(BIBDs\) from Affine Planes

David R.Berman1
1Department of Computer Science University of North Carolina at Wilmington, Wilmington, NC

Abstract

For any prime power \(q\), there exists an affine plane of order \(q\). The complement of an affine plane is a balanced incomplete block design (BIBD) with block size \(q^2-q\). In this note, a proof is given that the blocks can be split into sub-blocks to form a nested BIBD with parameters \((q^2, q^2+q, q^3+q^2, q^2-1,q-1)\). Alternatively, this is a generalized tournament design with one game each round, involving \(q\) teams, each team with \(q-1\) players.