Independent Cycles in a Bipartite Graph

Xiangwen Li1, Bing Wei 2, Fan Yang2
1Department of Mathematics Central China Normal University, Wuhan 430079, China
2Institute of Systems Science Chinese Academy of Sciences, Beijing 100080, China

Abstract

Let \(G = (V_1, V_2; E)\) be a bipartite graph with \(|V_1| = |V_2| = n \geq 2k\), where \(k\) is a positive integer. Let \(\sigma'(G) = \min\{d(u)+d(v): u\in V_1, v\in V_2, uv \not\in E(G)\}\). Suppose \(\sigma'(G) \geq 2k + 2\). In this paper, we will show that if \(n > 2k\), then \(G\) contains \(k\) independent cycles. If \(n = 2k\), then it contains \(k-1\) independent \(4\)-cycles and a \(4\)-path such that the path is independent of all the \(k-1\) \(4\)-cycles.