Minor Clique Free Extremal Graphs

M. Cera1, A. Dianez 2, P. Garcia-Vazquez3, J.C. Valenzuela4
1E.U.LT. Agricola, Universidad de Sevilla, Spain.
2E.T.S. Arquitectura, Universidad de Sevilla, Spain.
3B.U.LT. Agricola, Universidad de Sevilla, Spain.
4E.P.S. Algeciras, Universidad de Cadiz, Spain.

Abstract

In this note, we prove that the largest non-contractible to \(K^p\) graph of order \(n\) with \(\lceil \frac{2n+3}{3} \rceil \leq p \leq n\) is the Turán’s graph \(T_{2p-n-1}(n)\). Furthermore, a new upper bound for this problem is determined.