\(3\)-Restricted Edge Connectivity of Vertex Transitive Graphs

Ou Jianping1,2, Fuji Zhang3
1Department of Mathematics, Shantou University, Shantou 515063, China
2Department of Mathematics, Zhangzhou Normal College, Fujian 363000, China
3Department of Mathematics, Xiamen University,Xiamen 361005, China

Abstract

A \(3\)-restricted edge cut is an edge cut that disconnects a graph into at least two components each having order at least \(3\). The cardinality \(\lambda_3\) of minimum \(3\)-restricted edge cuts is called \(3\)-restricted edge connectivity. Let \(G\) be a connected \(k\)-regular graph of girth \(g(G) \geq 4\) and order at least \(6\). Then \(\lambda_3 \leq 3k – 4\). It is proved in this paper that if \(G\) is a vertex transitive graph then either \(\lambda_3 = 3k – 4\) or \(\lambda_3\) is a divisor of \(|G|\) such that \(2k – 2 \leq \lambda_3 \leq 3k – 5\) unless \(k = 3\) and \(g(G) = 4\). If \(k = 3\) and \(g(G) = 4\), then \(\lambda_3 = 4\). The extreme cases where \(\lambda_3 = 2k – 2\) and \(\lambda_3 = 3k – 5\) are also discussed.