The Graphs \(C_5^{(t)}\) are Graceful for \(t \equiv 0,3 \pmod 4\)

Yang Yuansheng1, Lin Xiaohui1, Yu Chunyan1
1Department of Computer Science Dalian University of Technology Dalian, 116024, P. R. China

Abstract

Given \(t\geq 2\) cycles \(C_n\) of length \(n \geq 3\), each with a fixed vertex \(v^i_0\), \(i=1,2,\ldots,t\), let \(C^(t)_n\) denote the graph obtained from the union of the \(t\) cycles by identifying the \(t\) fixed vertices (\(v^1_0 = v^2_0 = \cdots = v^t_0\)). Koh et al. conjectured that \(C^(t)^n\) is graceful if and only if \(nt \equiv 0, 3 \pmod{4}\). The conjecture has been shown true for \(t = 3, 6, 4k\). In this paper, the conjecture is shown to be true for \(n = 5\).