Distance Independent Domination in Iterated Line Graphs

Martin Knor1, Ludovit Niepel2
1Slovak University of Technology, Faculty of Civil Engineering, Department of Mathematics, Radlinského 11, 813 68 Bratislava, Slovakia,
2Kuwait University, Faculty of Science, Department of Mathematics & Computer Science, P.O. box 5969 Safat 13060, Kuwait,

Abstract

Let \(k \geq 1\) be an integer and let \(G = (V, E)\) be a graph. A set \(S\) of vertices of \(G\) is \(k\)-independent if the distance between any two vertices of \(S\) is at least \(k+1\). We denote by \(\rho_k(G)\) the maximum cardinality among all \(k\)-independent sets of \(G\). Number \(\rho_k(G)\) is called the \(k\)-packing number of \(G\). Furthermore, \(S\) is defined to be \(k\)-dominating set in \(G\) if every vertex in \(V(G) – S\) is at distance at most \(k\) from some vertex in \(S\). A set \(S\) is \(k\)-independent dominating if it is both \(k\)-independent and \(k\)-dominating. The \(k\)-independent dominating number, \(i_k(G)\), is the minimum cardinality among all \(k\)-independent dominating sets of \(G\). We find the values \(i_k(G)\) and \(\rho_k(G)\) for iterated line graphs.