La \(\{-k\}\)-autodualité des Sommes Lexicographiques Finies de Tournois Suivant un \(3\)-cycle ou un Tournoi.Critique

Houcine Bouchaala1, Youssef Boudabbous2
1Département de la préparation Mathématiques-Physique, Institut prépara- toire aux études d’ingénieurs de Sfax, Université de Sfax, BP 805, 3000 Sfax, Tunisie.
2Département de Mathématiques, Faculté des Sciences de Sfax, Université de Sfax, BP 802, 3018 Sfax, Tunisie,

Abstract

Let \(T = (V, A)\) be a finite tournament with \(n \geq 2\) vertices. The dual of T is the tournament \(T^* = (V, A^*)\) defined by: for all \(x,y \in V, (x,y) \in A^*\) if and only if \((y,x) \in A\). The tournament \(T\) is critical if \(T\) is indecomposable and if for all \(x \in V\), the subtournament \(T(V – \{x\})\) is decomposable. A \(3\)-cycle is a tournament isomorphic to the tournament \(T, = ({0,1,2}, {(0, 1), (1, 2), (2, 0)})\). Let \(F\) be a set of non negative integers \(k < n\). The tournament \(T\) is \(F\)-selfdual if for every subset \(X\) of \(V\) such that \(|X |\in F\), the subtournaments \(T(X)\) and \(T^*(X)\) are isomorphic. In this paper, we study, for each integer \(k \geq 1\), the \(\{n – k\}\)-selfduality of the tournaments, with \(n \geq 4+k\) vertices, that are lexicographical sums of tournaments under a \(3\)-cycle or a critical tournament. As application, we determine for each integer \(k \geq 1\), the tournaments, with \(n \geq 4+ k\) vertices, that are \(\{4,n – k\}\)-selfdual.