The Restricted Edge-Connectivity of Kautz Undirected Graphs

Ying-Mei Fan1, Jun-Ming Xu2, Min Lu2
1College of Mathematics and Information Science Guangxi University, Nanning, Guangxi, 530004, China
2Department of Mathematics University of Science and Technology of China Hefei, Anhui, 230026, China

Abstract

A connected graph is said to be super edge-connected if every minimum edge-cut isolates a vertex. The restricted edge-connectivity \(\lambda’\) of a connected graph is the minimum number of edges whose deletion results in a disconnected graph such that each connected component has at least two vertices. A graph \(G\) is called \(\lambda’\)-optimal if \(\lambda'(G) = \min\{d_G(u)+d_G(v)-2: uv \text{ is an edge in } G\}\). This paper proves that for any \(d\) and \(n\) with \(d \geq 2\) and \(n\geq 1\) the Kautz undirected graph \(UK(d, 1)\) is \(\lambda’\)-optimal except \(UK(2,1)\) and \(UK(2,2)\) and, hence, is super edge-connected except \(UK(2, 2)\).