The purpose of this note is to give the power formula of the generalized Lah matrix and show \(\mathcal{L}[x,y] = \mathcal{FQ}[x,y]\), where \(\mathcal{F}\) is the Fibonacci matrix and \(\mathcal{Q}[x,y]\) is the lower triangular matrix. From it, several combinatorial identities involving the Fibonacci numbers are obtained.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.