The problem of graceful labeling of a particular class of trees called quasistars is considered. Such a quasistar is a tree \(Q\) with \(k\) distinct paths with lengths \(1, d+1, 2d+1, \ldots, (k-1)d+1\) joined at a unique vertex \(\theta\).
Thus, \(Q\) has \(1 + [1 + (d+1) + (2d+1) + \ldots + (k-1)d+1)] = 1+k +\frac{k(k-1)d}{2}\) vertices. The \(k\) paths of \(Q\) have lengths in arithmetic progression with common difference \(d\). It is shown that \(Q\) has a graceful labeling for all \(k \leq 6\) and all values of \(d\).
1970-2025 CP (Manitoba, Canada) unless otherwise stated.