A graph is (induced)-universal for a class of graphs if every member of is contained in as an induced subgraph. We study the problem of finding universal graphs with minimum number of vertices for various classes of bipartite graphs: exponential classes, bipartite chain graphs, bipartite permutation graphs, and general bipartite graphs. For exponential classes and general bipartite graphs we present a construction which is asymptotically optimal, while for the other classes our solutions are optimal in order.