On the Three Color Ramsey Numbers \(R( C_m, C_4, C_4)\)

Sun Yongqi1, Yang Yuansheng1, Lin Xiaohui1, Zheng Wenping2
1Department of Computer Science, Dalian University of Technology Dalian, 116024, P. R. China
2Department of Computer Science, Dalian University of Technology Dalian, 116024, P. R. ChinaZheng Wenping

Abstract

Let \(G_i\) be the subgraph of \(G\) whose edges are in the \(i\)-th color in an \(r\)-coloring of the edges of \(G\). If there exists an \(r\)-coloring of the edges of \(G\) such that \(H_i \nsubseteq G_i\) for all \(1 \leq i \leq r\), then \(G\) is said to be \(r\)-colorable to \((H_1, H_2, \ldots, H_r)\). The multicolor Ramsey number \(R(H_1, H_2, \ldots, H_r)\) is the smallest integer \(n\) such that \(K_n\) is not \(r\)-colorable to \((H_1, H_2, \ldots, H_r)\). It is well known that \(R(C_m, C_4, C_4) = m + 2\) for sufficiently large \(m\). In this paper, we determine the values of \(R(C_m, C_4, C_4)\) for \(m \geq 5\), which show that \(R(C_m, C_4, C_4) = m + 2\) for \(m \geq 11\).