Adding Evidence to The Erdos-Faber-Lovasz Conjecture

David Romero1, Abdon Sanchez-Arroyo2
1lInstituto de Mateméticas, Universidad Nacional Auténoma de México, Av. Univer- sidad s/n., 62210 Cuernavaca, Mor., Mexico.
2Calidad y Seguridad de la Informacién, Secretarfa de Hacienda y Crédito Publico, Constituyentes 1001-B, Piso 3, Col, Belén de las flores, 01110 México, D.F., Mexico.

Abstract

A hypergraph is linear if no two distinct edges intersect in more than one vertex. A long standing conjecture of Erdős, Faber, and Lovász states that if a linear hypergraph has \(n\) edges, each of size \(n\), then its vertices can be properly colored with \(n\) colors. We prove the correctness of the conjecture for a new, infinite class of linear hypergraphs.