A simple, undirected \(2\)-connected graph \(G\) of order \(n\) belongs to the class \(\mathcal{B}(n,\theta)\), \(\theta \geq 0\) if \(2(d(x) + d(y) + d(z)) \geq 3(n – 1 – \theta)\) holds for all independent triples \(\{x,y,z\}\) of vertices. It is known (Bondy’s theorem for \(2\)-connected graphs) that \(G\) is hamiltonian if \(\theta = 0\). In this paper we give a full characterization of graphs \(G\) in \(\mathcal{B}(n,\theta)\), \(\theta \leq 2\) in terms of their dual hamiltonian closure.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.