Let \(F(x,y) = ax^2 + bxy + cy^2\) be a binary quadratic form of discriminant \(\Delta = b^2 – 4ac\) for \(a,b,c \in \mathbb{Z}\), let \(p\) be a prime number and let \(\mathbb{F}_p\) be a finite field. In this paper we formulate the number of integer solutions of cubic congruence \(x^3 + ax^2 + bx + c \equiv 0 \pmod{p}\) over \(\mathbb{F}_p\), for two specific binary quadratic forms \(F_1^k(x,y) = x^2 + kxy + ky^2\) and \(F_2^k(x,y) = kx^2 + kxy + k^2y^2\) for integer \(k\) such that \(1 \leq k \leq 9\). Later we consider representation of primes by \(F_1^k\) and \(F_2^k\).
1970-2025 CP (Manitoba, Canada) unless otherwise stated.