An aperiodic perfect map (APM) is an array with the property that each possible array of a given size, called a window, arises exactly once as a contiguous subarray in the array. In this paper, we give a construction method of an APM being a proper concatenation of some fragments of a given de Bruijn sequence. Firstly, we give a criterion to determine whether a designed sequence \(T\) with entries from the index set of a de Bruijn sequence can generate an APM. This implies a sufficient condition for being an APM. Secondly, two infinite families of APMs are given by constructions of corresponding sequences \(T\), respectively, satisfying the criterion.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.