Let \(C_m\) be a cycle on \(m (\geq 3)\) vertices and let \(\ominus_{n-m}C_m\) denote the class of graphs obtained from \(C_m\) by adding \(n-m (\geq 1)\) distinct pendent edges to the vertices of \(C_m\). In this paper, it is proved that for every \(T\) in \(\ominus_{n-m}C_m\), the complete graph \(K_{2n+1}\) can be cyclically decomposed into the isomorphic copies of \(T\). Moreover, if \(m\) is even, then for every positive integer \(p\), the complete graph \(K_{2pn+1}\) can also be cyclically decomposed into the isomorphic copies of \(T\).
1970-2025 CP (Manitoba, Canada) unless otherwise stated.