Matrices Associated to Biindexed Linear Recurrence Relations

Tan Mingshu1
1Department of Mathematics, Chongqing Three Gorges University, Chongqing Wanzhou 404000, People’s Republic of China

Abstract

The factorization of matrix \(A\) with entries \(a_{i,j}\) determined by \(a_{i,j} = \alpha a_{i-1,j-1} + \beta a_{i,j-1}\) is derived as \(A = TP^T\). An interesting factorization of matrix \(B\) with entries \(b_{i,j} = \alpha b_{i-1,j} + \beta b_{i,j-1}\) is given by \(B = P[\alpha]TP^{T}[\beta]\). The beautiful factorization of matrix \(C\) whose entries satisfy \(c_{i,j} = \alpha c_{i-1,j} + \beta c_{i-1,j-1} + Ye_{i-1,j-1}\) is founded to be \(C = P[\alpha]DP^T[\beta]\), where \(T\) is a Toeplitz matrix, and \(P\) and \(P[\alpha]\) are Pascal matrices. The matrix product factorization to the problem is solved perfectly so far.