Some designs using the action of the linear fractional groups \(L_2(q)\), \(q = 11, 13, 16, 17, 19, 23\) are constructed. We will show that \(L_2(q)\) or its automorphism group acts as the full automorphism group of each of the constructed designs except in the case \(q = 16\). For designs constructed from \(L_2(16)\), we will show that \(L_2(16)\), \(L_2(16) : 2\), \(L_2(16) : 4\) or \(S_{17}\) can arise as the full automorphism group of the design.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.