For odd \(n \geq 5\), the Flower Snark \(F_n = (V, E)\) is a simple undirected cubic graph with \(4n\) vertices, where \(V = \{a_i : 0 \leq i \leq n-1\} \cup \{b_i : 0 \leq i \leq n-1\} \cup \{c_i : 0 \leq i \leq 2n-1\}\) and \(E = \{b_ib_{(i+1)\mod(n)}: 0 \leq i \leq n-1\} \cup \{c_ic_{(i+1)\mod(2n)} : 0 \leq i \leq 2n-1\} \cup \{a_ib_i,a_ic_i,a_ic_{n+i} : 0 \leq i \leq n-1\}\). For \(n = 3\) or even \(n \geq 4\), \(F_n\) is called the related graph of Flower Snark. We show that the crossing number of \(F_n\) equals \(n – 2\) if \(3 \leq n \leq 5\), and \(n\) if \(n \geq 6\).
1970-2025 CP (Manitoba, Canada) unless otherwise stated.