Critically and Minimally Cochromatic Graphs

Lifeng Ou1,2
1School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu 730000, People’s Republic of China
2College of Computer Science and Information Engineering, Northwest University for Nationalities, Lanzhou, Gansu 730030, People’s Republic of China

Abstract

The cochromatic number of a graph \(G\), denoted by \(z(G)\), is the fewest number of parts we need to partition \(V(G)\) so that each part induces in \(G\) an empty or a complete graph. A graph \(G\) with \(z(G) = n\) is called \({critically n-cochromatic}\) if \(z(G – v) = n – 1\) for each vertex \(v\) of \(G\), and \({minimally n-cochromatic}\) if \(z(G – e) = n – 1\) for each edge \(e\) of \(G\).

We show that for a graph \(G\), \(K_{1} \cup G \cup K_{2} \cup \cdots \cup K_{n-1} \cup G\) is a critically \(n\)-cochromatic graph if and only if \(G\) is \(K_{n}\), \((n \geq 2)\). We consider general minimally cochromatic graphs and obtain a result that a minimally cochromatic graph is either a critically cochromatic graph or a critically cochromatic graph plus some isolated vertices. We also prove that given a graph \(G\), then \(K_{1} \cup G \cup K_{2} \cup \cdots \cup K_{n-1} \cup G\) \((n \geq 2)\) is minimally \(n\)-cochromatic if and only if \(G\) is \(K_{n}\) or \(\overline{K_{n-1}} \cup \overline{K_{p}}\) for \(p \geq 1\). We close by giving some properties of minimally \(n\)-cochromatic graphs.