We view a lobster in this paper as below. A lobster with diameter at least five has a unique path \(H = x_0, x_1, \ldots, x_m\) with the property that, besides the adjacencies in \(H\), both \(x_0\) and \(x_m\) are adjacent to the centers of at least one \(K_{i,s}\), where \(s > 0\), and each \(x_i\), \(1 \leq i \leq m-1\), is at most adjacent to the centers of some \(K_{1,s}\), where \(s \geq 0\). This unique path \(H\) is called the central path of the lobster. We call \(K_{1,s}\) an even branch if \(s\) is nonzero even, an odd branch if \(s\) is odd, and a pendant branch if \(s = 0\). In this paper, we give graceful labelings to some new classes of lobsters with diameter at least five. In these lobsters, the degree of each vertex \(x_i\), \(0 \leq i \leq m-1\), is even and the degree of \(x_m\) may be odd or even, and we have one of the following features:
1970-2025 CP (Manitoba, Canada) unless otherwise stated.