On Multi-Color Partitions with Distinct Parts

Arnold Knopfmacher1, Neville Robbins2
1School of Mathematics University of the Witwatersrand Johannesburg, South Africa
2Mathematics Department San Francisco State University San Francisco, CA 94132 USA

Abstract

Given integers \(m \geq 2, r \geq 2\), let \(q_m(n), q_0^{(m)}(n), b_r^{(m)}(n)\) denote respectively the number of \(m\)-colored partitions of \(n\) into: distinct parts, distinct odd parts, and parts not divisible by \(r\).We obtain recurrences for each of the above-mentioned types of partition functions.