In this paper, we will prove that there exist no \([n,k,d]_q\) codes of \(sq^{k-1}-(s+t)q^{k-2}-q^{k-4} \leq d \leq sq^{k-1}-(s+t)q^{k-2}\) attaining the Griesmer bound with \(k \geq 4, 1 \leq s \leq k-2, t \geq 1\), and \(s+t \leq (q+1)\backslash 2\). Furthermore, we will prove that there exist no \([n,k,d]_q\) codes for \(sq^{k-1}-(s+t)q^{k-2}-q^{k-3} \leq d \leq s\) attaining the Griesmer bound with \(k \geq 3\), \(1 \leq s \leq k-2\), \(t \geq 1\), and \(s+t \leq \sqrt{q}-1\). The results generalize the nonexistence theorems of Tatsuya Maruta (see \([7]\)) and Andreas Klein (see \([4]\)) to a larger class of codes.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.