Radio Number for Square Paths

Daphne Der-Fen Liu 1, Melanie Xie2
1Department of Mathematics California State University, Los Angeles Los Angeles, CA 90032
2Department of Mathematics East Los Angeles College Monterey Park, CA 91754

Abstract

Let \(G\) be a connected graph. For any two vertices \(u\) and \(v\), let \(d(u, v)\) denote the distance between \(u\) and \(v\) in \(G\). The maximum distance between any pair of vertices is called the diameter of \(G\) and denoted by \(diam(G)\). A radio-labeling (or multi-level distance labeling) with span \(k\) for \(G\) is a function \(f\) that assigns to each vertex a label from the set \(\{0, 1, 2, \ldots, k\}\) such that the following holds for any vertices \(u\) and \(v\): \(|f(u) – f(v)| \geq diam(G) – d(u, v) + 1\). The radio number of \(G\) is the minimum span over all radio-labelings of \(G\). The square of \(G\) is a graph constructed from \(G\) by adding edges between vertices of distance two apart in \(G\). In this article, we completely determine the radio number for the square of any path.