A Novel Characterization of \(n\)-Extendable Bipartite Graphs

Hong Lin1, Xiaofeng Guo2
1School of Sciences, Jimei University, Xiamen 361021, P. R. China
2School of Mathematical Sciences, Xiamen University, Xiamen 361005, P. R. China

Abstract

Let \(G\) be a simple connected graph. For a subset \(S\) of \(V(G)\) with \(|S| = 2n + 1\), let \(\alpha_{(2n+1)}(G,S)\) denote the graph obtained from \(G\) by contracting \(S\) to a single vertex. The graph \(\alpha_{(2n+1)}(G, S)\) is also said to be obtained from \(G\) by an \(\alpha_{(2n+1)}\)-contraction. For pairwise disjoint subsets \(S_1, S_2, \ldots, S_{2n}\) of \(V(G)\), let \(\beta_n(G, S_1, S_2, \ldots, S_{2n})\) denote the graph obtained from \(G\) by contracting each \(S_i\) (\(i = 1, 2, \ldots, 2n\)) to a single vertex respectively. The graph \(\beta_{2n}(G, S_1, S_2, \ldots, S_{2n})\) is also said to be obtained from \(G\) by a \(\beta_{2n}\)-contraction. In the present paper, based on \(\alpha_{(2n+1)}\)-contraction and \(\beta_{2}\)-contraction, some new characterizations for \(n\)-extendable bipartite graphs are given.