Contents

-

On Construction of Infinite Families of k-Tight Optimal Double-Loop Networks

Jianqin Zhou1,2
1Telecommunication School Hangzhou Dianzi University, Hangzhou 310018, China
2Computer Science School Anhui University of Technology, Ma’anshan 243002, China

Abstract

A double-loop network (DLN) G(N;r,s) is a digraph with the vertex set V={0,1,,N1} and the edge set E={vv+r(modN) and vv+s(modN)|vV}. Let D(N;r,s) be the diameter of G(N;r,s) and let us define D(N)=min{D(N;r,s)|1r<s<N and gcd(N,r,s)=1}, D1(N)=min{D(N;1,s)|1<s0). Coppersmith proved that there exists an infinite family of N for which the minimum diameter D(N)3N+c(logN)14, where c is a constant.