Upper Bounds on the Total Domination Number

Teresa W.Haynes1, Michael A.Henning2
1Department of Mathematics East Tennessee State University Johnson City, TN 37614-0002 USA
2School of Mathematical Sciences University of KwaZulu-Natal Pietermaritzburg, 3209 South Africa

Abstract

A total dominating set of a graph \(G\) with no isolated vertex is a set \(S\) of vertices of \(G\) such that every vertex is adjacent to a vertex in \(S\). The total domination number of \(G\) is the minimum cardinality of a total dominating set in \(G\). In this paper, we present several upper bounds on the total domination number in terms of the minimum degree, diameter, girth, and order.