Multidecomposition of the Complete Graph into Graph Pairs of Order \(4\) with Various Leaves

Atif Abueida 1, Sally Clark2, David Leach3
1Department of Mathematics, Univer- sity of Dayton, Dayton, OH 45469-2316.
2Division of Science and Mathematics, Birmingham-Southemn College, 900 Arkadelphia Road, Birmingham , AL 35254
3Department of Mathematics, University of West Georgia, Carrollton, GA 30118

Abstract

A graph-pair of order \(t\) is two non-isomorphic graphs \(G\) and \(H\) on \(t\) non-isolated vertices for which \(G \cup H \cong K_t\) for some integer \(t \geq 4\). Given a graph-pair \((G, H)\), we say \((G, H)\) divides some graph \(K\) if the edges of \(K\) can be partitioned into copies of \(G\) and \(H\) with at least one copy of \(G\) and at least one copy of \(H\). We will refer to this partition as a \((G, H)\)-multidecomposition of \(K\).