For integers \(s,t \geq 1\), the Ramsey number \(R(s, t)\) is defined to be the least positive integer \(n\) such that every graph on \(n\) vertices contains either a clique of order \(s\) or an independent set of order \(t\). In this note, we derive new lower bounds for the Ramsey numbers: \(R(6,8) \geq 129\), \(R(7,9) \geq 235\) and \(R(8,17) \geq 937\). The new bounds are obtained with a constructive method proposed by Xu and Xie et al. and the help of computer algorithm.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.