Note on the Choosability of Bipartite Graphs

Guoping Wang1,2, Qiongxiang Huang 3
1Department of Mathematics, Xinjiang Normal University, Urumgi, Xinjiang 830000, P.R.China
2Department of Mathematics, Jiangsu Teachers University of Technology, Changzhou, Jiangsu 213001, P.R.China
3The College of Mathematics and Systems Sciences, Xinjiang University, Urumqi, Xinjiang 830046, P.R.China

Abstract

Let \(B\) be a bipartite graph. We obtain two new results as follows:(1) Suppose that \(u \in V(B)\) is a vertex such that \(N_B(u)\) contains at least \(|N_B(u)| – 1\) odd vertices. Let \(f : V(B) \to \mathbb{N}\) be the function such that \(f(u) = 1\) and \(f(v) = \lceil d_B(v)/2 \rceil + 1\) for \(v \in V(B) \setminus u\). Then \(B\) is \(f\)-choosable.(2) Suppose that \(u \in V(B)\) is a vertex such that every vertex in \(N_B(u)\) is odd, and \(v \in V(B)\) is an odd vertex that is not adjacent to \(u\). Let \(f : V(B) \to \mathbb{N}\) be the function such that \(f(u) = 1\), \(f(v) = \lceil d_B(v)/2 \rceil\), and \(f(w) = \lceil d_B(w)/2 \rceil + 1\) for \(w \in V(B) \setminus \{u, v\}\). Then \(B\) is \(f\)-choosable.