Orientable Embedding Distributions By Genus For Certain Type of Non-Planar Graphs (II)

Liangxia Wan1, Yanpei Liu1
1Department of Mathematics Beijing Jiaotong University, Beijing 100044, P.R.China

Abstract

In this paper, we give an explicit expression of the genus distributions of \(M_j^n\), for \(j = 1, 2, \ldots, 11\), which are introduced in the previous paper “Orientable embedding distributions by genus for certain types of non-planar graphs”. For a connected graph \(G = (V, E)\) with a cycle, let \(e\) be an edge on a cycle. By adding \(2n\) vertices \(u_1, u_2,u_3 \ldots, u_n, v_1, v_2,v_3 \ldots, v_n\) on \(e\) in sequence and connecting \(u_k, v_k\) for \(1 \leq k \leq n\), a non-planar graph \(G_n\) is obtained for \(n \geq 3\). Thus, the orientable embedding distribution of \(G_n\) by genus is obtained via the genus distributions of \(M_j^n\).