Some Classes of Extended Directed Triple Systems and Numbers of Common Blocks

Wen-Chung Huang1, Yi-Hsin Shih2
1Department of Mathematics Soochow University Taipei, Taiwan, Republic of China.
2Kaohsiung Municipal Sanmin Senior High School Kaohsiung, Taiwan, Republic of China.

Abstract

An extended directed triple system of order \(v\) with an idempotent element (EDTS(\(v, a\))) is a collection of triples of the type \([x, y, z]\), \([x, y, x]\) or \((x, x, x)\) chosen from a \(v\)-set, such that every ordered pair (not necessarily distinct) belongs to only one triple and there are \(a\) triples of the type \((x, x, x)\). If such a design with parameters \(v\) and \(a\) exists, then it will have \(b_{v,a}\) blocks, where \(b_{v,a} = (v^2 + 2a)/3\). A necessary and sufficient condition for the existence of EDTS(\(v, 0\)) and EDTS(\(v, 1\)) are \(v \equiv 0 \pmod{3}\) and \(v \not\equiv 0 \pmod{3}\), respectively. In this paper, we have constructed two EDTS(\(v, a\))’s such that the number of common triples is in the set \(\{0, 1, 2, \ldots, b_{v,a} – 2, b_{v,a}\}\), for \(a = 0, 1\).