For positive integers \(c \geq 0\) and \(k \geq 1\), let \(n = R(c, k)\) be the least integer, provided it exists, such that every \(2\)-coloring of the set \([1,n] = \{1,\ldots,n\}\) admits a monochromatic solution to the equation \(x + y+c = 4z\) with \(x, y, z \in [1,n]\). In this paper, the precise value of \(R(c, 4)\) is shown to be \(\left\lceil{3c + 2}/{8}\right\rceil\) for all even \(c \geq 34\).
1970-2025 CP (Manitoba, Canada) unless otherwise stated.