A digraph is a local out-tournament if the outset of every vertex is a tournament. Here, we use local out-tournaments, whose strong components are upset tournaments, to explore the corresponding ranks of the adjacency matrices. Of specific interest is the out-tournament whose adjacency matrix has boolean, nonnegative integer, term, and real rank all equal to the number of vertices, . Corresponding results for biclique covers and partitions of the digraph are provided.