We study the factorisations of a cyclic permutation of length \(n\) as a product of a minimal number of transpositions, calculating the number \(f(n, m)\) of factorisations in which a fixed element is moved \(m\) times. In this way, we also give a new proof-in the spirit of Clarke’s proof of Cayley’s theorem on the number of labelled trees-of the fact that there are \(n^{n-2}\) such factorisations.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.