Upper Embeddable Graphs Via the Degree-Sum of Adjacent Vertices

Guanghua Dong1, Yanpei Liu2, Ning Wang3
1Department of Mathematics, Tianjin Polytechnic University, Tianjin, 300160, P.R. China.
2Department of Mathematics, Beijing Jiaotong University, Betjing, 100044, P.R. China.
3Department of Information Science and Technology, Tianjin University of Finance and Economics, Tianjin, 300222, P.R. China.

Abstract

A semi-double graph is such a connected multi-graph that each multi-edge consists of two edges. If there is at most one loop at each vertex of a semi-double graph, then this graph is called a single-petal graph. In this paper, we obtained that if \(G\) is a connected (resp. \(2\)-edge-connected, \(3\)-edge-connected) simple graph of order \(n\), then \(G\) is upper embeddable if \(d_G(u) + d_G(v) \geq \left\lceil\frac{2n-3}{2}\right\rceil\) (resp. \(d_G(u) + d_G(v) \geq \left\lceil\frac{2n-2}{3}\right\rceil, d_G(u) + d_G(v) \geq \left\lceil\frac{2n-23}{2}\right\rceil\)) for any two adjacent vertices \(u\) and \(v\) of \(G\). In addition, by means of semi-double graph and single-petal graph, the upper embeddability of multi-graph and pseudograph are also discussed in this paper.