\((d, 1)\)-Total Labellings of Regular Nonbipartite Graphs and an Application to Flower Snarks

Tong Chunling1, Lin Xiaohui2, Yang Yuansheng3, Hou Zhengwei3
1Department of Information Science and Engineering Shandong Jiaotong University Jinan, 250023, P. R. China
2Department of Computer Science and Engineering Dalian University of Technology Dalian, 116024, P. R. China
3 Department of Computer Science and Engineering Dalian University of Technology Dalian, 116024, P. R. China

Abstract

A \((d,1)\)-totel labelling of a graph \(G\) is an assignment of integers to \(V(G) \cap E(G)\) such that: (i) any two adjacent vertices of \(G\) receive distinct integers, (ii) any two adjacent edges of \(G\) receive distinct integers, and (iii) a vertex and its incident edge receive integers that differ by at least \(d\) in absolute value. The span of a \((d,1)\)-total labelling is the maximum difference between two labels. The minimum span of labels required for such a \((d, 1)\)-total labelling of \(G\) is called the \((d, 1)\)-total number and is denoted by \(\lambda_d^T(G)\). In this paper, we prove that \(\lambda_d^T(G)\geq d+r+1 \) for \(r\)-regular nonbipartite graphs with \(d \geq r \geq 3\) and determine the \((d, 1)\)-total numbers of flower snarks and of quasi flower snarks.