New Classes of Integral Trees of Diameter \(4\)

Ligong Wang1, Xiaodong Liu2
1Department of Applied Mathematics, School of Science, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P.R.China
2School of Information, Xi’an University of Finance and Economics, Xi’an, Shaanxi 710061, P.R.China

Abstract

A graph is called integral if all eigenvalues of its adjacency matrix are integers. In this paper, we investigate integral trees \(S(r;m_i) = S(a_1+a_2+\cdots+a_s;m_1,m_2,\ldots,m_s)\) of diameter \(4\) with \(s = 2,3\). We give a better sufficient and necessary condition for the tree \(S(a_1+a_2;m_1,m_2)\) of diameter \(4\) to be integral, from which we construct infinitely many new classes of such integral trees by solving some certain Diophantine equations. These results are different from those in the existing literature. We also construct new integral trees \(S(a_1+a_2+a_3;m_1,m_2,m_3) = S(a_1+1+1;m_1,m_2,m_3)\) of diameter \(4\) with non-square numbers \(m_2\) and \(m_3\). These results generalize some well-known results of P.Z. Yuan, D.L. Zhang \(et\) \(al\).