On the Generalized Antiaverage Problem

Bing Yao1, Ming Yao2, Hui Cheng1
1College of Mathematics and Information Science, Northwest Normal University, Lanzhou, 730070, P.R.China
2Department of Information Process and Control Engineering, Lanzhou Petrochemical College of Vocational Technology, Lanzhou, 730060, P.R.China

Abstract

For integers \(k, \theta \leq 3\) and \(\beta \geq 1\), an integer \(k\)-set \(S\) with the smallest element \(0\) is a \((k; \beta, \theta)\)-free set if it does not contain distinct elements \(a_{i,j}\) (\(1 \leq i \leq j \leq \theta\)) such that \(\sum_{j=1}^{\theta -1}a_{i ,j} = \beta a_{i_\theta}\). The largest integer of \(S\) is denoted by \(\max(S)\). The generalized antiaverage number \(\lambda(k; \beta, \theta)\) is equal to \(\min\{\max(S) : S \text{ is a } (k^0; \delta, 0)\text{-free set}\}\). We obtain:(1) If \(\beta \notin \{\theta-2, \theta-1, \theta\}\), then \(\lambda(m; \beta, \theta) \leq (\theta-1)(m-2) + 1\); (2) If \(\beta \geq {\theta-1}\), then \(\lambda(k; \beta, \theta) \leq \min\limits_{k=m+n}\{\lambda(m;\beta,\theta)+\beta \lambda (n;\beta,\theta)+1\}\), where \(k =m+n \) with \(n>m\geq 3\) and \(\lambda(2n;\beta,\theta)\leq \lambda(n;\beta,\theta)(\beta+1)+\varepsilon\), for \(\varepsilon=1\) for \(\theta=3\) and \(\varepsilon=0\) otherwise.