Let \(G\) be a finite, simple graph. We denote by \(\gamma(G)\) the domination number of \(G\). The bondage number of \(G\), denoted by \(b(G)\), is the minimum number of edges of \(G\) whose removal increases the domination number of \(G\). \(C_n\) denotes the cycle of \(n\) vertices. For \(n \geq 5\) and \(n \neq 5k + 3\), the domination number of \(C_5 \times C_n\) was determined in [6]. In this paper, we calculate the domination number of \(C_5 \times C_n\) for \(n = 5k + 3\) (\(k \geq 1\)), and also study the bondage number of this graph, where \(C_5 \times C_n\) is the cartesian product of \(C_5\) and \(C_n\).
1970-2025 CP (Manitoba, Canada) unless otherwise stated.