Edge-Antimagicness for a Class of Disconnected Graphs

Martin Baca1, Ljiljana Brankovic2
1Department of Appl. Mathematics, Technical University Letna 9, 042 00 Koiice, Slovak Republic
2School of Electrical Eng. and Comp. Science The University of Newcastle, NSW 2308, Australia

Abstract

Suppose \(G\) is a finite graph with vertex-set \(V(G)\) and edge-set \(E(G)\). An \((a, d)\)-edge-antimagic total labeling on \(G\) is a one-to-one map \(f\) from \(V(G) \cup E(G)\) onto the integers \(1, 2, \ldots, |V(G)| + |E(G)|\) with the property that the edge-weights \(w(uv) = f(u) + f(v) + f(uv)\), \(uv \in E(G)\), form an arithmetic progression starting from \(a\) and having common difference \(d\). Such a labeling is called super if the smallest labels appear on the vertices. In this paper, we investigate the existence of super \((a, d)\)-edge-antimagic total labelings of disjoint union of multiple copies of complete bipartite graph.