A Sharp Lower Bound for the Wiener Index of a Graph

R. Balakrishnan1, N. Sridharan2, K.Viswanathan Iyer3
1Srinivasa Ramanujan Centre Kumbakonam-612 001, India
2Department of Mathematics Alagappa University Karaikudi-630 003, India
3Department of Computer Science and Engineering National Institute of Technology Tiruchirapalli-620 015, India

Abstract

Given a simple connected undirected graph \(G\), the Wiener index \(W(G)\) of \(G\) is defined as half the sum of the distances over all pairs of vertices of \(G\). In practice, \(G\) corresponds to what is known as the molecular graph of an organic compound. We obtain a sharp lower bound for \(W(G)\) of an arbitrary graph in terms of the order, size, and diameter of \(G\).